Functions 2 Question 4

5. For $x \in R-{0,1}$, let $f _1(x)=\frac{1}{x}, f _2(x)=1-x \quad$ and $f _3(x)=\frac{1}{1-x}$ be three given functions. If a function, $J(x)$ satisfies $\left(f _2 \circ J \circ f _1\right)(x)=f _3(x)$, then $J(x)$ is equal to

(2019 Main, 9 Jan I)

(a) $f _2(x)$

(b) $f _3(x)$

(c) $f _1(x)$

(d) $\frac{1}{x} f _3(x)$

Show Answer

Answer:

Correct Answer: 5. (b)

Solution:

  1. We have,

$$ f _1(x)=\frac{1}{x}, f _2(x)=1-x \text { and } f _3(x)=\frac{1}{1-x} $$

Also, we have $\left(f _2 \circ J\right.$ o $\left.f _1\right)(x)=f _3(x)$

$$ \begin{array}{cc} \Rightarrow & f _2\left(\left(J o f _1\right)(x)\right)=f _3(x) \\ \Rightarrow & f _2\left(J\left(f _1(x)\right)=f _3(x)\right. \\ \Rightarrow & 1-J\left(f _1(x)\right)=\frac{1}{1-x} \\ {\left[\because f _2(x)=1-x \text { and } f _3(x)=\frac{1}{1-x}\right]} \\ \Rightarrow & 1-J \frac{1}{x}=\frac{1}{1-x} \quad\left[\because f _1(x)=\frac{1}{x}\right] \\ \Rightarrow & J \frac{1}{x}=1-\frac{1}{1-x} \\ =\frac{1-x-1}{1-x}=\frac{-x}{1-x} \end{array} $$

Now, put $\frac{1}{x}=X$, then

$$ \begin{array}{rlr} J(X) & =\frac{\frac{-1}{X}}{1-\frac{1}{X}} \\ & =\frac{-1}{X-1}=\frac{1}{1-X} \end{array} $$

$$ \Rightarrow \quad J(X)=f _3(X) \text { or } J(x)=f _3(x) $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक