Functions 2 Question 2

3. Let $\sum _{k=1}^{10} f(a+k)=16\left(2^{10}-1\right)$, where the function $f$ satisfies $f(x+y)=f(x) f(y)$ for all natural numbers $x, y$ and $f(1)=2$. Then, the natural number ’ $a$ ’ is

(2019 Main, 9 April I)

(a) 2

(b) 4

(c) 3

(d) 16

Show Answer

Answer:

Correct Answer: 3. (c)

Solution:

  1. Given, $f(x+y)=f(x) \cdot f(y)$

Let $\quad f(x)=\lambda^{x}$

[where $\lambda>0$ ]

$\because \quad f(1)=2$

(given)

$\therefore \lambda=2$

$$ \text { So, } \begin{aligned} \sum _{k=1}^{10} f(a+k) & =\sum _{k=1}^{10} \lambda^{a+k}=\lambda^{a} \sum _{k=1}^{10} \lambda^{k} \\ & =2^{a}\left[2^{1}+2^{2}+2^{3}+\ldots . .+2^{10}\right] \\ & =2^{a} \frac{2\left(2^{10}-1\right)}{2-1} \end{aligned} $$

[by using formula of sum of $n$-terms of a GP having first term ’ $a$ ’ and common ratio ’ $r$ ‘, is

$$ S _n=\frac{a\left(r^{n}-1\right)}{r-1}, \text { where } r>1 $$

$$ \begin{array}{ll} \Rightarrow & 2^{a+1}\left(2^{10}-1\right)=16\left(2^{10}-1\right) \text { (given) } \\ \Rightarrow & 2^{a+1}=16=2^{4} \Rightarrow a+1=4 \Rightarrow a=3 \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक