Functions 2 Question 18

19. Find the natural number a for which

k=1nf(a+k)=16(2n1)

where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2.

(1992, 6M)

Show Answer

Solution:

  1. Let f(n)=2n for all positive integers n.

Now, for n=1,f(1)=2=2 !

It is true for n=1. Again, let f(k) is true.

f(k)=2k, for some kN. Again, f(k+1)=f(k)f(1) [by definition] =2k2 [from induction assumption] =2k+1

Therefore, the result is true for n=k+1. Hence, by principle of mathematical induction,

f(n)=2n,nN

Now, k=1nf(a+k)=k=1nf(a)f(k)=f(a)k=1n2k

=f(a)2(2n1)21=2a2(2n1)=2a+1(2n1)

But k=1nf(a+k)=16(2n1)=24(2n1)

Therefore, a+1=4a=3



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक