Functions 2 Question 15

16. If $y=f(x)=\frac{x+2}{x-1}$, then

(1984, 3M)

(a) $x=f(y)$

(b) $f(1)=3$

(c) $y$ increases with $x$ for $x<1$

(d) $f$ is a rational function of $x$

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 16. (b, c)

Solution:

  1. Given, $y=f(x)=\frac{x+2}{x-1}$

$$ \begin{array}{lrll} \Rightarrow & y x-y=x+2 & \Rightarrow & x(y-1)=y+2 \\ \Rightarrow & x=\frac{y+2}{y-1} & \Rightarrow & x=f(y) \end{array} $$

Here, $f(1)$ does not exist, so domain $\in R-{1}$

$$ \begin{aligned} \frac{d y}{d x} & =\frac{(x-1) \cdot 1-(x+2) \cdot 1}{(x-1)^{2}} \\ & =-\frac{3}{(x-1)^{2}} \end{aligned} $$

$\Rightarrow f(x)$ is decreasing for all $x \in R-{1}$.

Also, $f$ is rational function of $x$.

Hence, (a) and (d) are correct options.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक