Functions 2 Question 12

13. Let f(x)=sinπ6sinπ2sinx for all xR and g(x)=π2sinx for all xR. Let (fg)(x) denotes fg(x) and ( gf)(x) denotes gf(x). Then, which of the following is/are true?

(2015 Adv.)

(a) Range of f is 12,12

(b) Range of fog is 12,12

(c) limx0f(x)g(x)=π6

(d) There is an xR such that (gof) (x)=1

Show Answer

Answer:

Correct Answer: 13. (d)

Solution:

  1. (a) f(x)=sinπ6sinπ2sinx,xR =sinπ6sinθ,θπ2,π2, where θ=π2sinx =sinα,απ6,π6, where α=π6sinθ

f(x)12,12

Hence, range of f(x)12,12

So, option (a) is correct.

(b) fg(x)=f(t),tπ2,π2f(t)12,12

Option (b) is correct. (c) limx0f(x)g(x)=limx0sinπ6sinπ2sinxπ2(sinx)

=limx0sinπ6sinπ2sinxπ6sinπ2sinxπ6sinπ2sinxπ2sinx=1×π6×1=π6

Option (c) is correct.

(d) gf(x)=1

π2sinf(x)=1sinf(x)=2π But f(x)12,12π6,π6sinf(x)12,12

sinf(x)2π

[from Eqs. (i) and (ii)]

i.e. No solution.

Option (d) is not correct.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक