Functions 1 Question 2

2. Let f(x)=ax(a>0) be written as f(x)=f1(x)+f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x+y)+f1(xy) equals

(2019 Main, 8 April II)

(a) 2f1(x+y)f2(xy)

(b) 2f1(x+y)f1(xy)

(c) 2f1(x)f2(y)

(d) 2f1(x)f1(y)

Show Answer

Answer:

Correct Answer: 2. (d)

Solution:

  1. Given, function f(x)=ax,a>0 is written as sum of an even and odd functions f1(x) and f2(x) respectively.

Clearly, f1(x)=ax+ax2 and f2(x)=axax2

So, f1(x+y)+f1(xy)

=12[ax+y+a(x+y)]+12[axy+a(xy)]

=12axay+1axay+axay+ayax

=12axay+1ay+1ax1ay+ay

=12ax+1axay+1ay=2ax+ax2ay+ay2=2f1(x)f1(y)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक