Functions 1 Question 11

11. If $S$ is the set of all real $x$ such that $\frac{2 x-1}{2 x^{3}+3 x^{2}+x}$ is positive, then $S$ contains

(1986, 2M)

(a) $-\infty,-\frac{3}{2}$

(b) $-\frac{3}{2},-\frac{1}{4}$

(c) $-\frac{1}{4}, \frac{1}{2}$

(d) $\frac{1}{2}, 3$

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 11. $(a, d)$

Solution:

  1. Since,

$$ \frac{2 x-1}{2 x^{3}+3 x^{2}+x}>0 $$

Hence, the solution set is,

$$ x \in(-\infty,-1) \cup(-1 / 2,0) \cup(1 / 2, \infty) $$

Hence, (a) and (d) are the correct options.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक