Ellipse 2 Question 4

4. If the tangent to the parabola y2=x at a point (α,β),(β>0) is also a tangent to the ellipse, x2+2y2=1, then α is equal to

(2019 Main, 9 April II)

(a) 2+1

(b) 21

(c) 22+1

(d) 221

Show Answer

Solution:

  1. Since the point (α,β) is on the parabola y2=x, so

α=β2

Now, equation of tangent at point (α,β) to the parabola y2=x, is T=0

yβ=12(x+α)

[ equation of the tangent to the parabola y2=4ax at a point (x1,y1) is given by yy1=2a(x+x1)]

2yβ=x+β2y=x2β+β2

Since, line (ii) is also a tangent of the ellipse

x2+2y2=1

[ condition of tangency of line y=mx+c to ellipse x2a2+y2b2=1 is c2=a2m2+b2,

here

m=12β,a=1,b=12 and c=β2

β24=14β2+12

β4=1+2β2

β42β21=0

β2=2±4+42=2±222=1±2

β2=1+2

α=β2=1+2



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक