Ellipse 2 Question 3

3. If the line x2y=12 is tangent to the ellipse x2a2+y2b2=1 at the point 3,92, then the length of the latusrectum of the ellipse is

(2019 Main, 10 April I)

(a) 83

(b) 9

(c) 5

(d) 122

Show Answer

Solution:

Key Idea Write equation of the tangent to the ellipse at any point and use formula for latusrectum of ellipse.

Equation of given ellipse is

x2a2+y2b2=1

Now, equation of tangent at the point 3,92 on the ellipse (i) is

3xa29y2b2=1

[ the equation of the tangent to the ellipse x2a2+y2b2=1 at the point (x1,y1) is xx1a2+yy1b2=1]

Tangent (ii) represent the line x2y=12, so

13a2=292b2=121a2=36 and b2=27

Now, Length of latusrectum =2b2a=2×276=9 units



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक