Ellipse 2 Question 22

22. Let d be the perpendicular distance from the centre of the ellipse x2/a2+y2/b2=1 to the tangent drawn at a point P on the ellipse. If F1 and F2 are the two foci of the ellipse, then show that

(PF1PF2)2=4a21b2d2

(1995,5M)

Integer Type Question

Show Answer

Answer:

Correct Answer: 22. (b)

Solution:

  1. Let the coordinates of point P be (acosθ,bsinθ).

Then, equation of tangent at P is

xacosθ+ybsinθ=1

We have, d= length of perpendicular from O to the

d=|0+01|cos2θa2+sin2θb21d=cos2θa2+sin2θb21d2=cos2θa2+sin2θb2

We have to prove (PF1PF2)2=4a21b2d2

Now, RHS =4a21b2d2=4a24a2b2d2

=4a24a2b2cos2θa2+sin2θb2=4a24b2cos2θ4a2sin2θ=4a2(1sin2θ)4b2cos2θ=4a2cos2θ4b2cos2θ=4cos2θ(a2b2)=4cos2θa2e2e=1(b/a)2

Again, PF1=e|acosθ+a/e|=a|ecosθ+1|

=a(ecosθ+1)

[1cosθ1 and 0<e<1]

Similarly, PF2=a(1ecosθ)

Therefore, LHS=(PF1PF2)2

=[a(ecosθ+1)a(1ecosθ)]2=(aecosθ+aa+aecosθ)2=(2aecosθ)2=4a2e2cos2θ

Hence, LHS = RHS



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक