Ellipse 2 Question 17

17. Let E1 and E2 be two ellipses whose centres are at the origin. The major axes of E1 and E2 lie along the X-axis and Y-axis, respectively. Let S be the circle x2+(y1)2=2. The straight line x+y=3 touches the curves S,E1 and E2 at P,Q and R, respectively.

Suppose that PQ=PR=223. If e1 and e2 are the eccentricities of E1 and E2 respectively, then the correct expression(s) is/are

(2015 Adv.)

(a) e12+e22=4340

(b) e1e2=7210

(c) |e12e22|=58

(d) e1e2=34

Analytical & Descriptive Questions

Show Answer

Answer:

Correct Answer: 17. (b)

Solution:

  1. Here, E1:x2a2+y2b2=1,(a>b) E2:x2c2+y2d2=1,(c<d) and S:x2+(y1)2=2 as tangent to E1,E2 and S is x+y=3.

Let the point of contact of tangent be (x1,y1) to S.

xx1+yy1(y+y1)+1=2

or xx1+yy1y=(1+y1), same as x+y=3.

x11=y111=1+y13 i.e. x1=1 and y1=2P=(1,2)

Since, PR=PQ=223. Thus, by parametric form,

x11/2=y21/2=±223x=53,y=43 and x=13,y=83Q=53,43 and R=13,83

Now, equation of tangent at Q on ellipse E1 is

x5a23+y4b23=1

On comparing with x+y=3, we get

a2=5 and b2=4e12=1b2a2=145=15

Also, equation of tangent at R on ellipse E2 is

x1a23+y8b23=1

On comparing with x+y=3, we get

a2=1,b2=8e22=1a2b2=118=78 Now, e12e22=740e1e2=7210 and e12+e22=15+78=4340 Also, |e12e22|=|1578|=2740



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक