Ellipse 2 Question 11

11. The normal at a point P on the ellipse x2+4y2=16 meets the X-axis at Q. If M is the mid-point of the line segment PQ, then the locus of M intersects the latusrectum of the given ellipse at the points (2009)

(a) ±352,±27

(b) ±352,±194

(c) ±23,±17

(d) ±23,±437

Show Answer

Solution:

  1. Given, x216+y24=1

[replacing k by y and h by x ]

Here,

a=4,b=2

Equation of normal

4xsecθ2ycosecθ=12M7cosθ2,sinθ=(h,k)h=7cosθ2=2h7=cosθ

and k=sinθ

On squaring and adding Eqs. (i) and (ii), we get

4h249+k2=1[cos2θ+sin2θ=1] Hence, locus is 4x249+y2=1

For given ellipse, e2=1416=34

e=32x=±4×32=±23[x=±ae]

On solving Eqs. (iii) and (iv), we get

449×12+y2=1y2=14849=149y=±17

Required points ±23,±17.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक