Ellipse 2 Question 10

10. The locus of the foot of perpendicular drawn from the centre of the ellipse x2+3y2=6 on any tangent to it is

(a) (x2y2)2=6x2+2y2

(2014 Main)

(b) (x2y2)2=6x22y2

(c) (x2+y2)2=6x2+2y2

(d) (x2+y2)2=6x22y2

Show Answer

Solution:

  1. Equation of ellipse is x2+3y2=6 or x26+y22=1.

Equation of the tangent is xcosθa+ysinθb=1

Let (h,k) be any point on the locus.

hacosθ+kbsinθ=1

Slope of the tangent line is bacotθ.

Slope of perpendicular drawn from centre (0,0) to (h,k) is k/h.

Since, both the lines are perpendicular.

kh×bacotθ=1cosθha=sinθkb=αcosθ=αhasinθ=αkb

From Eq. (i), ha(αha)+kb(αkb)=1

h2α+k2α=1α=1h2+k2

Also, sin2θ+cos2θ=1

(αkb)2+(αha)2=1

α2k2b2+α2h2a2=1

k2b2(h2+k2)2+h2a2(h2+k2)2=1

2k2(h2+k2)2+6h2(h2+k2)2=1[a2=6,b2=2]

6x2+2y2=(x2+y2)2



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक