Ellipse 2 Question 1

1. If the normal to the ellipse 3x2+4y2=12 at a point P on it is parallel to the line, 2x+y=4 and the tangent to the ellipse at P passes through Q(4,4) then PQ is equal to

(a) 552

(b) 612

(c) 2212

(d) 1572

(2019 Main, 12 April I)

Show Answer

Solution:

  1. Key Idea Equation of tangent and normal to the ellipse

x2a2+y2b2=1 at point p(x1,y1) is T=0xx1a2+yy1b2=1 and a2xx1b2yy1=a2b2 respectively. 

Equation of given ellipse is 3x2+4y2=12

x24+y23=1

Now, let point P(2cosθ,3sinθ), so equation of tangent to ellipse (i) at point P is

xcosθ2+ysinθ3=1

Since, tangent (ii) passes through point Q(4,4)

2cosθ+43sinθ=1

and equation of normal to ellipse (i) at point P is

4x2cosθ3y3sinθ=432xsinθ3cosθy=sinθcosθ

Since, normal (iv) is parallel to line, 2x+y=4

Slope of normal (iv) = slope of line, 2x+y=4

23tanθ=2tanθ=3θ=120

(sinθ,cosθ)=32,12

Hence, point P1,32

Now, PQ=(4+1)2+4322

=25+254=552

[given cordinates of Q(4,4) ]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक