Ellipse 1 Question 3

3. Let S and S be the foci of an ellipse and B be any one of the extremities of its minor axis. If ΔSBS is a right angled triangle with right angle at B and area (ΔSBS)=8sq units, then the length of a latus rectum of the ellipse is

(a) 22

(b) 42

(c) 2

(d) 4

(2019 Main, 12 Jan II)

Show Answer

Answer:

Correct Answer: 3. (d)

Solution:

  1. Let the ellipse be x2a2+y2b2=1.

Then, according to given information, we have the following figure.

Clearly, slope of line SB=bae and slope of line SB=bae

Lines SB and SB are perpendicular, so

baebae=1

[ product of slopes of two

b2=a2e2

Also, it is given that area of ΔSBS=8

12a2=8

[SB=SB=a because SB+SB=2a and SB=SB]

a2=16a=4

e2=1b2a2=1e2

[from Eq. (i)]

2e2=1

e2=12

From Eqs. (i) and (iii), we get

b2=a212=1612 [using Eq. (ii)] b2=8

Now, length of latus rectum =2b2a=2×84=4 units

4 Let the equation of ellipse be x2a2+y2b2=1

Then, according the problem, we have

2b2a=8 and 2ae=2b

 [Length of latusrectum =2b2a and 

length of minor axis =2b]

bba=4 and ba=eb(e)=4b=41e

Also, we know that b2=a2(1e2)

b2a2=1e2e2=1e22e2=1e=12

From Eqs. (i) and (ii), we get

Now, a2=b21e2=32112=64

Equation of ellipse be x264+y232=1

Now, check all the options.

Only (43,22), satisfy the above equation.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक