Differential Equations 2 Question 18

19. Let f(x) be differentiable on the interval (0,) such that f(1)=1, and limtxt2f(x)x2f(t)tx=1 for each x>0. Then, f(x) is

(a) 13x+2x23

(b) 13x+4x23

(c) 1x+2x2

(d) 1x

(2007, 3M)

Show Answer

Answer:

Correct Answer: 19. (a)

Solution:

  1. Given, limtxt2f(x)x2f(t)tx=1

x2f(x)2xf(x)+1=0

x2f(x)2xf(x)(x2)2+1x4=0

ddxf(x)x2=1x4

On integrating both sides, we get

f(x)=cx2+13x

Also, f(1)=1,c=23

Hence, f(x)=23x2+13x



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक