Differential Equations 2 Question 1

1. The general solution of the differential equation (y2x3)dxxydy=0(x0) is (where, C is a constant of integration)

(2019 Main, 12 April II)

(a) y22x2+Cx3=0

(b) y2+2x3+Cx2=0

(c) y2+2x2+Cx3=0

(d) y22x3+Cx2=0

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given differential equation is

(y2x3)dxxydy=0,(x0)xydydxy2=x3

Now, put y2=t2ydydx=dtdxydydx=12dtdx

x2dtdxt=x3

dtdx2xt=2x2

which is the linear differential equation of the form

dtdx+Pt=Q

Here, P=2x and Q=2x2.

Now, IF =e2xdx=1x2

Solution of the linear differential equation is (IF) t=Q (IF) dx+λ [where λ is integrating constant]

t1x2=2x2×1x2dx+λtx2=2x+λy2x2+2x=λ[t=y2]y2+2x3λx2=0 or y2+2x3+Cx2=0[letC=λ]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक