Differential Equations 1 Question 6

6. The value of $\sum _{k=1}^{13} \frac{1}{\sin \frac{\pi}{4}+\frac{(k-1) \pi}{6} \sin \frac{\pi}{4}+\frac{k \pi}{6}}$ is equal to

(2016 Adv.)

(a) $3-\sqrt{3}$

(b) $2(3-\sqrt{3})$

(c) $2(\sqrt{3}-1)$

(d) $2(2+\sqrt{3})$

Show Answer

Answer:

Correct Answer: 6. (c)

Solution:

  1. Here, $\sum _{k=1}^{13} \frac{1}{\sin \frac{\pi}{4}+\frac{(k-1) \pi}{6} \sin \frac{\pi}{4}+\frac{k \pi}{6}}$

Converting into differences, by multiplying and dividing by $\sin \frac{\pi}{4}+\frac{k \pi}{6}-\frac{\pi}{4}+\frac{(k-1) \pi}{6}$, i.e. $\sin \frac{\pi}{6}$.

$$ \therefore \sum _{k=1}^{13} \frac{\sin \frac{\pi}{4}+k \frac{\pi}{6}-\frac{\pi}{4}+(k-1) \frac{\pi}{6}}{\sin \frac{\pi}{6} \sin \frac{\pi}{4}+(k-1) \frac{\pi}{6} \sin \frac{\pi}{4}+k \frac{\pi}{6}} $$

$$ \begin{aligned} & =2 \sum _{k=1}^{13} \frac{\sin \frac{\pi}{4}+\frac{k \pi}{6} \cos \frac{\pi}{4}+(k-1) \frac{\pi}{6}}{\sin \frac{\pi}{4}+(k-1) \frac{\pi}{6} \sin \frac{\pi}{4}+k \frac{\pi}{6}} \\ & =2 \sum _{k=1}^{13} \cot \frac{\pi}{4}+(k-1) \frac{\pi}{6}-\cot \frac{\pi}{4}+k \frac{\pi}{6} \\ & =2 \cot \frac{\pi}{4}-\cot \frac{\pi}{4}+\frac{\pi}{6} \\ & +\quad+\cot \frac{\pi}{4}+\frac{\pi}{6}-\cot \frac{\pi}{4}+\frac{2 \pi}{6} \\ & +2+\cot \frac{\pi}{4}+12 \frac{\pi}{6}-\cot \frac{\pi}{4}+13 \frac{\pi}{6} \\ & =2 \cot \frac{\pi}{4}-\cot \frac{\pi}{4}+13 \frac{\pi}{6} \\ & =21-\cot \frac{29 \pi}{12}=21-\cot 2 \pi+\frac{5 \pi}{12} \\ & =2(1-2+\sqrt{3}) \\ & =2(\sqrt{3}-1) \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक