Differential Equations 1 Question 1

1. Let f be a differentiable function such that f(1)=2 and f(x)=f(x) for all xR. If h(x)=f(f(x)), then h(1) is equal to

(2019 Main, 12 Jan II)

(a) 4e2

(b) 4e

(c) 2e

(d) 2e2

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given that, f(x)=f(x)

f(x)f(x)=1f(x)f(x)dx=1dx

[by integrating both sides w.r.t. x ]

Putf(x)=tf(x)dx=dt

dtt=1dx

ln|t|=x+Cdxx=ln|x|+C

ln|f(x)|=x+C

[t=f(x)~]

f(1)=2 So, ln(2)=1+CC=ln2lne[lne=1]C=ln2e[lnAlnB=lnAB]

From Eq. (i), we get

ln|f(x)|=x+ln2e

ln|f(x)|ln2e=x

ln|ef(x)2|=x[lnAlnB=lnAB]

|e2f(x)|=ex[lna=ba=eb,a>0]

|f(x)|=2ex1|e2f(x)|=e2|f(x)|f(x)=2ex1 or 2ex1 Now, h(x)=f(f(x))h(x)=f(f(x))f(x) [on differentiating both sides w.r.t. ’ x ‘] h(1)=f(f(1))f(1)=f(2)f(1)[f(1)=2 (given) ]=2e212e11[f(x)=2ex1 or 2ex1]=4e



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक