Complex Numbers 5 Question 6

6. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$, then the least positive value of $n$ is

(a) 2

(b) 3

(c) 5

(d) 6

(2004, 1M)

Show Answer

Answer:

Correct Answer: 6. (b)

Solution:

  1. Given, $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$
$\Rightarrow$ $(-\omega)^{n}$ $=\left(-\omega^{2}\right)^{n}$ $\left[\because \omega^{3}=1\right.$ and $\left.1+\omega+\omega^{2}=0\right]$
$\Rightarrow$ $\omega^{n}$ $=1$
$\Rightarrow$ $n$ $=3$ is the least positive value of $n$.


जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक