Complex Numbers 5 Question 5

5. The minimum value of |a+bω+cω2|, where a,b and c are all not equal integers and ω(1) is a cube root of unity, is

(a) 3

(b) 12

(c) 1

(d) 0

(2005,1M)

Show Answer

Answer:

Correct Answer: 5. (c)

Solution:

  1. Let z=|a+bω+cω2|

z2=|a+bω+cω2|2=(a2+b2+c2abbcca)

or z2=12(ab)2+(bc)2+(ca)2

Since, a,b,c are all integers but not all simultaneously equal.

If a=b then ac and bc

Because difference of integers = integer

(bc)21 {as minimum difference of two consecutive integers is Extra close brace or missing open brace also (ca)21

and we have taken a=b(ab)2=0

From Eq. (i), z212(0+1+1)

z21

Hence, minimum value of |z| is 1 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक