Complex Numbers 5 Question 3

3. Let z0 be a root of the quadratic equation, x2+x+1=0, If z=3+6iz0813iz093, then argz is equal to

(a) π4

(b) π6

(c) 0

(d) π3

Show Answer

Answer:

Correct Answer: 3. (a)

Solution:

  1. Given, x2+x+1=0

x=1±3i2

[ Roots of quadratic equation ax2+bx+c=0

are given by x=b±b24ac2a ]

z0=ω,ω2[ where ω=1+3i2 and

ω2=13i2

are the cube roots of unity and ω,ω21 )

Now consider z=3+6iz0813iz093

=3+6i3i(ω3n=(ω2)3n=1)=3+3i=3(1+i)

If ’ θ ’ is the argument of z, then

tanθ=Im(z)Re(z)[z is in the first quadrant ]=33=1θ=π4



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक