Complex Numbers 5 Question 18

19. It is given that $n$ is an odd integer greater than 3 , but $n$ is not a multiple of 3 . Prove that $x^{3}+x^{2}+x$ is a factor of $\quad(x+1)^{n}-x^{n}-1$

(1980, 3M)

Show Answer

Solution:

  1. Since, $n$ is not a multiple of 3 , but odd integers and

$$ x^{3}+x^{2}+x=0 \Rightarrow x=0, \omega, \omega^{2} $$

Now, when $x=0$

$\Rightarrow(x+1)^{n}-x^{n}-1=1-0-1=0$

$\therefore \quad x=0$ is root of $(x+1)^{n}-x^{n}-1$

Again, when $x=\omega$

$\Rightarrow(x+1)^{n}-x^{n}-1=(1+\omega)^{n}-\omega^{n}-1=-\omega^{2 n}-\omega^{n}-1=0$

[as $n$ is not a multiple of 3 and odd]

Similarly, $x=\omega^{2}$ is root of ${(x+1)^{n}-x^{n}-1 }$

Hence, $x=0, \omega, \omega^{2}$ are the roots of $(x+1)^{n}-x^{n}-1$

Thus, $x^{3}+x^{2}+x$ divides $(x+1)^{n}-x^{n}-1$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक