Complex Numbers 5 Question 12

13. Let zk=cos2kπ10+isin2kπ10;k=1,2,9.

Column I Column II
P. For each zk, there exists a zj such that
zkzj=1
(i) True
Q. There exists a k1,2,,9 such that
z1z=zk has no solution z in the set of
complex numbers
(ii) False
R. |1z1||1z2||1z9|10 equal (iii) 1
S. 1k=19cos2kπ10 equals (iv) 2

Codes

P Q R S
(a) (i) (ii) (iv) (iii)
(b) (ii) (i) (iii) (iv)
(c) (i) (ii) (iii) (iv)
(d) (ii) (i) (iv) (iii)

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 13. (c)

Solution:

  1. (P) PLAN eiθeiα=ei(θ+α)

Given zk=ei2kπ10zkzj=ei2π10(k+j)

zk is 10 th root of unity.

z¯k will also be 10th root of unity.

Taking, zj as z¯k, we have zkzj=1 (True)

 (Q) PLAN eiθeiα=ei(θα)z=zk/z1=ei2kπ102π10=eiπ5(k1)

For k=2;z=eiπ5 which is in the given set (False)

(R) PLAN

(i) 1cos2θ=2sin2θ

(ii) sin2θ=2sinθcosθ and

 (i) cos36=514

(ii) cos108=5+14|1z1||1z2||1z9|10

NOTE |1zk|=1cos2πk10isin2πk10

=2sinπk10sinπk10icosπk10=2|sinπk10|

Now, required product is

29sinπ10sin2π10sin3π10sin8π10sin9π1010=29sinπ10sin2π10sin3π10sin4π102sin5π1010=29sinπ10cosπ10sin2π10cos2π102110

=2912sinπ512sin2π5210=25(sin36sin72)210=2522×10(2sin36sin72)2=225(cos36cos108)2=225514+5+14=22554=1

(S) Sum of nth roots of unity =0

1+α+α2+α3++α9=01+k=19αk=01+k=19cos2kπ10+isin2kπ10=01+k=19cos2kπ10=01k=19cos2kπ10=2

1ωω2



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक