Complex Numbers 3 Question 4

4. Let z and w be two complex numbers such that |z|1, |w|1 and |z+iw|=|ziw¯|=2, then z equals

(1995,2M)

(a) 1 or i

(b) i or i

(c) 1 or -1

(d) i or -1

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. Given,

|z+iw|=|ziw¯|=2

|z(iw)|=|z(iw¯)|=2|z(iw)|=|z(iw¯)|

z lies on the perpendicular bisector of the line joining iw and iw¯. Since, iw¯ is the mirror image of iw in the X-axis, the locus of z is the X-axis.

Let z=x+iy and y=0.

Now, |z|1x2+0211x1.

z may take values given in option (c).

Alternate Solution

|z+iw||z|+|iw|=|z|+|w|1+1=2|z+iw|2|z+iw|=2 holds when argzargiw=0argziw=0ziw is purely real. zw is purely imaginary. 

Similarly, when |ziw¯|=2, then zw¯ is purely imaginary

Now, given relation

|z+iw|=|ziw¯|=2

Put w=i, we get

|z+i2|=|z+i2|=2|z1|=2

z=1[|z|1]

Put w=i, we get

|zi2|=|zi2|=2|z+1|=2z=1z=1 or 1 is the correct option. [|z|1]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक