Complex Numbers 3 Question 1

1. Let z1 and z2 be any two non-zero complex numbers such that 3|z1|=4|z2|. If z=3z12z2+2z23z1, then

(2019 Main, 10 Jan I)

(a) |z|=12172

(b) Im(z)=0

(c) Re(z)=0

(d) |z|=52

Show Answer

Answer:

Correct Answer: 1. ()

Solution:

  1. (*) Given, 3|z1|=4|z2||z1||z2|=43[z20|z2|0]

z1z2=|z1z2|eiθ and z2z1=|z2z1|eiθ

[z=|z|(cosθ+isinθ)=|z|eiθ]

z1z2=43eiθ and z2z1=34eiθ

32z1z2=2eiθ and 23z2z1=12eiθ

On adding these two, we get

z=32z1z2+23z2z1=2eiθ+12eiθ

=2cosθ+2isinθ+12cosθ12isinθ

[e±iθ=(cosθ±isinθ)]

=52cosθ+32isinθ

|z|=522+322=344=172

Note that z is neither purely imaginary and nor purely real.

‘*’ None of the options is correct.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक