Complex Numbers 2 Question 25
26. $\min _{z \in s}|1-3 i-z|$ is equal to
(a) $\frac{2-\sqrt{3}}{2}$
(b) $\frac{2+\sqrt{3}}{2}$
(c) $\frac{3-\sqrt{3}}{2}$
(d) $\frac{3+\sqrt{3}}{2}$
Show Answer
Answer:
Correct Answer: 26. $A \rightarrow q, r ; B \rightarrow p ; C \rightarrow p, s, t ; D \rightarrow q, r, s, t$
Solution:
- $\min _{Z \in}|1-3 i-z|=$ perpendicular distance of point $(1,-3)$
from the line $\quad \sqrt{3} x+y=0 \Rightarrow \frac{|\sqrt{3}-3|}{\sqrt{3+1}}=\frac{3-\sqrt{3}}{2}$