Complex Numbers 2 Question 22

23. Let $s, t, r$ be non-zero complex numbers and $L$ be the set of solutions $z=x+i y \quad(x, y \in R, i=\sqrt{-1})$ of the equation $s z+t \bar{z}+r=0$, where $\bar{z}=x-i y$. Then, which of the following statement(s) is (are) TRUE?

(2018 Adv.)

(a) If $L$ has exactly one element, then $|s| \neq|t|$

(b) If $|s|=|t|$, then $L$ has infinitely many elements

(c) The number of elements in $L \cap{z:|z-1+i|=5}$ is at most 2

(d) If $L$ has more than one element, then $L$ has infinitely many elements

Show Answer

Answer:

Correct Answer: 23. (c)

Solution:

  1. We have,

$$ s z+t \bar{z}+r=0 $$

On taking conjugate

$$ \bar{s} \bar{z}+\bar{t} z+\bar{r}=0 $$

On solving Eqs. (i) and (ii), we get

$$ z=\frac{\bar{r} t-r \bar{s}}{|s|^{2}-|t|^{2}} $$

(a) For unique solutions of $z$ $|s|^{2}-|t|^{2} \neq 0 \quad \Rightarrow \quad|s| \neq|t|$

It is true

(b) If $|s|=|t|$, then $\bar{r} t-r \bar{s}$ may or may not be zero.

So, $z$ may have no solutions.

$\therefore L$ may be an empty set. It is false.

(c) If elements of set $L$ represents line, then this line and given circle intersect at maximum two point.

Hence, it is true.

(d) In this case locus of $z$ is a line, so $L$ has infinite elements. Hence, it is true.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक