Complex Numbers 2 Question 10

10. Let $z=x+i y$ be a complex number where, $x$ and $y$ are integers. Then, the area of the rectangle whose vertices are the root of the equation $z \bar{z}^{3}+\bar{z} z^{3}=350$, is

(2009)

(a) 48

(b) 32

(c) 40

(d) 80

Show Answer

Answer:

Correct Answer: 10. (a)

Solution:

  1. Since,

$$ z \bar{z}\left(z^{2}+\bar{z}^{2}\right)=350 $$

$\Rightarrow \quad 2\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=350$

$\Rightarrow \quad\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=175$

Since, $x, y \in I$, the only possible case which gives integral solution, is

$$ \begin{aligned} x^{2}+y^{2} & =25 \\ x^{2}-y^{2} & =7 \end{aligned} $$

From Eqs. (i) and (ii),

$$ x^{2}=16, y^{2}=9 \Rightarrow x= \pm 4, y= \pm 3 $$

$\therefore$ Area of rectangle $=8 \times 6=48$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक