Circle 4 Question 20

20. Let $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ be a given circle. Find the locus of the foot of the perpendicular drawn from the origin upon any chord of $S$ which subtends a right angle at the origin.

$(1988,5$ M)

Show Answer

Answer:

Correct Answer: 20. $x^{2}+y^{2}+g x+f y+\frac{c}{2}=0$

Solution:

  1. Let $P(h, k)$ be the foot of perpendicular drawn from origin $O(0,0)$ on the chord $A B$ of the given circle such that the chord $A B$ subtends a right angle at the origin.

The equation of chord $A B$ is

$$ y-k=-\frac{h}{k}(x-h) \Rightarrow h x+k y=h^{2}+k^{2} $$

The combined equation of $O A$ and $O B$ is homogeneous equation of second degree obtained by the help of the given circle and the chord $A B$ and is given by,

$$ x^{2}+y^{2}+(2 g x+2 f y) \frac{h x+k y}{h^{2}+k^{2}}+c{\frac{h x+k y}{h^{2}+k^{2}}}^{2}=0 $$

Since, the lines $O A$ and $O B$ are at right angle. $\therefore$ Coefficient of $x^{2}+$ Coefficient of $y^{2}=0$

$\Rightarrow 1+\frac{2 g h}{h^{2}+k^{2}}+\frac{c h^{2}}{\left(h^{2}+k^{2}\right)^{2}}$

$$ +1+\frac{2 f k}{h^{2}+k^{2}}+\frac{c k^{2}}{\left(h^{2}+k^{2}\right)^{2}}=0 $$

$\Rightarrow 2\left(h^{2}+k^{2}\right)+2(g h+f k)+c=0$

$\Rightarrow \quad h^{2}+k^{2}+g h+f k+\frac{c}{2}=0$

$\therefore$ Required equation of locus is

$$ x^{2}+y^{2}+g x+f y+\frac{c}{2}=0 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक