Circle 2 Question 12

13. The angle between a pair of tangents drawn from a point P to the circle

x2+y2+4x6y+9sin2α+13cos2α=0

is 2α. The equation of the locus of the point P is

(1996, 1M)

(a) x2+y2+4x6y+4=0

(b) x2+y2+4x6y9=0

(c) x2+y2+4x6y4=0

(d) x2+y2+4x6y+9=0

Show Answer

Answer:

Correct Answer: 13. (a)

Solution:

  1. Centre of the circle

x2+y2+4x6y+9sin2α+13cos2α=0

is C(2,3) and its radius is

(2)2+(3)29sin2α13cos2α=1313cos2α9sin2α=13sin2α9sin2α=4sin2α=2sinα

Let (h,k) be any point P and

APC=α,PAC=π/2

That is, triangle APC is a right angled triangle.

sinα=ACPC=2sinα(h+2)2+(k3)2(h+2)2+(k3)2=4h2+4+4h+k2+96k=4h2+k2+4h6k+9=0

Thus, required equation of the locus is

x2+y2+4x6y+9=0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक