Circle 1 Question 20

20. If (mi,1/mi),mi>0,i=1,2,3,4 are four distinct points on a circle, then show that m1m2m3m4=1.

(1989,2M)

Show Answer

Solution:

  1. Let the points mi,1mi;i=1,2,3,4 lie on a circle x2+y2+2gx+2fy+c=0.

Then, mi2+1mi2+2gmi+2fmi+c=0;

Since, mi4+2gmi3+cmi2+2fmi+1=0;i=1,2,3,4 m1,m2,m3 and m4 are the roots of the equation

m4+2gm3+cm2+2fm+1=0m1m2m3m4=11=1



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक