Circle 1 Question 19

19. A circle passes through three points A,B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at a point D inside the circle. If angles DAB and CAB are α and β respectively and the distance between the point A and the mid-point of the line segment DC is d, prove that the area of the circle is

πd2cos2αcos2α+cos2β+2cosαcosβcos(βα)

(1996,5M)

Show Answer

Solution:

  1. Let the radius of the circle be r. Take X-axis along AC and the O(0,0) as centre of the circle. Therefore, coordinate of A and C are (r,0) and (r,0), respectively.

Now, BAC=β,BOC=2β

Therefore, coordinates of B are (rcos2β,rsin2β).

And slope of AD is tan(βα).

Let (x,y) be the coordinates of the point D. Equation of AD is

y=tan(βα)(x+r)

[ slope =tan(βα) and point is (r,0)]

Now, equation of BC is

y=rsin2β0rcos2βr(xr)y=r2sinβcosβr(2sin2β)(xr)y=2sinβcosβ2sin2β(xr)y=cotβ(xr)

To obtain the coordinate of D, solve Eqs. (i) and (ii) simultaneously

tan(βα)(x+r)=cotβ(xr)xtan(βα)+rtan(βα)=xcotβ+rcotβx[tan(βα)+cotβ]=r[cotβtan(βα)]xsin(βα)cos(βα)+cosβsinβ=rcosβsinβsin(βα)cos(βα)

xsin(βα)sinβ+cos(βα)cosβcos(βα)sinβ=rcosβcos(βα)sinβsin(βα)sinβcos(βα)x[cos(βαβ)]=r[cos(βα+β)]x=rcos(2βα)cosα

On putting this value in Eq. (ii), we get

y=cotβrcos(2βα)cosαry=cosβrsinβcos(2βα)cosαcosαy=rcosβsinβ2sin2βα+α2sinα2β+α2cosαy=rcosβsinβ2sinβsin(αβ)cosα=2rcosβsin(αβ)/cosα

Therefore, coordinates of D are

rcos(2βα)cosα,2rcosβsin(αβ)cosα

Thus, coordinates of E are

rcos(2βα)+rcosα2cosα,rcosβsin(αβ)cosαr2cos2βα+α2cos2βαα22cosα,rcosβcos(βα)cosα,rcosβsin(βα)cosα

Since, AE=d, we get

d2=r2cosβcos(βα)cosα+12+r2cosβsin(βα)cosα2=r2cos2α[cos2βcos2(βα)+cos2α+2cosβcos(βα)cosα+cos2βsin2(βα)]=r2cos2α[cos2βcos2(βα)+sin2(βα)+cos2α+2cosβcosαcos(βα)]=r2cos2α[cos2β+cos2α+2cosαcosβcos(βα)]r2=d2cos2αcos2β+cos2α+2cosαcosβcos(βα)

Therefore, area of the circle

πr2=πd2cos2αcos2β+cos2α+2cosαcosβcos(βα)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक