Binomial Theorem 2 Question 4

4. For r=0,1,,10, if Ar,Br and Cr denote respectively the coefficient of xr in the expansions of (1+x)10,(1+x)20 and (1+x)30. Then, r=110Ar(B10BrC10Ar) is equal to

(a) B10C10

(b) A10(B102C10A10)

(c) 0

(d) C10B10

(2010)

Show Answer

Answer:

Correct Answer: 4. (d)

Solution:

  1. Ar= Coefficient of xr in (1+x)10=10Cr

Br= Coefficient of xr in (1+x)20=20Cr

Cr= Coefficient of xr in (1+x)30=30Cr

r=110Ar(B10BrC10Ar)=r=110ArB10Brr=110ArC10Ar

=r=11010Cr20C1020Crr=11010Cr30C1010Cr

=r=11010C10r20C1020Crr=11010C10r30C1010Cr

=20C10r=11010C10r20Cr30C10r=11010C10r10Cr

=20C10(30C101)30C10(20C101)

=30C1020C10=C10B10

A=30C030C1030C130C11+30C230C12

= Coefficient of x20 in (1+x)30(1x)30

+30C2030C30

= Coefficient of x20 in (1x2)30

= Coefficient of x20 in r=030(1)r30Cr(x2)r

=(1)1030C10 [for coefficient of x20, put r=10 ] =30C10



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक