Binomial Theorem 2 Question 15

18. If $(1+x)^{n}=C _0+C _1 x+C _2 x^{2}+\ldots+C _n x^{n}$, then show that the sum of the products of the $C _i^{\prime}$ s taken two at a time represented by $\Sigma \Sigma C _i C _j$ is equal to

$$ 0 \leq i<j \leq n 2^{2 n-1}-\frac{(2 n !)}{2(n !)^{2}} $$

(1983, 3M)

Show Answer

Solution:

  1. We know that,

$2 \sum \sum _{0 \leq i<j \leq n} C _i C _j=\sum _{i=0}^{n} \sum _{j=0}^{n} C _i C _j-\sum _{i=0}^{n} \sum _{j=0}^{n} C _i C _j$

$$ \begin{aligned} & =\sum _{i=0}^{n} C _i \sum _{j=0}^{n} C _j-\sum _{i=0}^{n} C _i^{2} \\ & =2^{n} 2^{n}-\left({ }^{2 n} C _n\right)=2^{2 n}-{ }^{2 n} C _n \\ \therefore \quad \sum _{0 \leq i<j \leq n} C _i C _j & =\frac{2^{2 n}-{ }^{2 n} C _n}{2}=2^{2 n-1}-\frac{(2 n) !}{2(n !)^{2}} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक