Binomial Theorem 2 Question 12

15. Prove that 3!2(n+3)=r=0n(1)rnCrr+3Cr

(2002,1M) maximum when m is equal to

(d) 20

(a) 5

(b) 10

(c) 15

is equal to

(2000, 2M)

(a) n+1 r1

(b) 2n+1 r+1

(c) 2rn+2

(d) n+2 r

Show Answer

Solution:

  1. r=0n(1)rnCrr+3Cr

=r=0n(1)rn!3!(nr)!(r+3)!=3!r=0n(1)rn!(nr)!(r+3)!

=3!(n+1)(n+2)(n+3)r=0n(1)r(n+3)!(nr)!(r+3)!

=3!(n+1)(n+2)(n+3)r=0n(1)rn+3Cr+3

=3!(1)3(n+1)(n+2)(n+3)s=3n+3(1)sn+3C3

=3!(n+1)(n+2)(n+3)s0n+3(1)sn+3Cs

=n+3C0+n+3C1n+3C2(n+1)(n+2)(n+3)01+(n+3)(n+3)(n+2)2!=3!(n+1)(n+2)(n+3)(n+2)(2n3)2=3!2(n+3)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक