Binomial Theorem 2 Question 12

15. Prove that $\frac{3 !}{2(n+3)}=\sum _{r=0}^{n}(-1)^{r} \frac{{ }^{n} C _r}{{ }^{r+3} C _r}$

$(2002,1 M)$ maximum when $m$ is equal to

(d) 20

(a) 5

(b) 10

(c) 15

is equal to

(2000, 2M)

(a) $\begin{aligned} & n+1 \ & r-1\end{aligned}$

(b) $2 \begin{aligned} & n+1 \ & r+1\end{aligned}$

(c) $2 \stackrel{n+2}{r}$

(d) $\begin{gathered}n+2 \ r\end{gathered}$

Show Answer

Solution:

  1. $\sum _{r=0}^{n}(-1)^{r} \frac{{ }^{n} C _r}{{ }^{r+3} C _r}$

$$ =\sum _{r=0}^{n}(-1)^{r} \frac{n ! \cdot 3 !}{(n-r) !(r+3) !}=3 ! \sum _{r=0}^{n}(-1)^{r} \frac{n !}{(n-r) !(r+3) !} $$

$$ =\frac{3 !}{(n+1)(n+2)(n+3)} \sum _{r=0}^{n} \frac{(-1)^{r} \cdot(n+3) !}{(n-r) !(r+3) !} $$

$=\frac{3 !}{(n+1)(n+2)(n+3)} \cdot \sum _{r=0}^{n}(-1)^{r} \cdot{ }^{n+3} C _{r+3}$

$=\frac{3 !(-1)^{3}}{(n+1)(n+2)(n+3)} \sum _{s=3}^{n+3}(-1)^{s} \cdot{ }^{n+3} C _3$

$$ =\frac{-3 !}{(n+1)(n+2)(n+3)} \sum _{s \doteq 0}^{n+3}(-1)^{s}{ }^{n+3} C _s $$

$$ \begin{aligned} & =\frac{-{ }^{n+3} C _0+{ }^{n+3} C _1-{ }^{n+3} C _2}{(n+1)(n+2)(n+3)} \quad 0-1+(n+3)-\frac{(n+3)(n+2)}{2 !} \\ & =\frac{-3 !}{(n+1)(n+2)(n+3)} \cdot \frac{(n+2)(2-n-3)}{2}=\frac{3 !}{2(n+3)} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक