Binomial Theorem 2 Question 11

14. For any positive integers m,n (with nm ),

If mn=nCm. Prove that

nm+n1m+n2m++mm=n+1m+1

Prove that

or

nm+2n1m+3mn2++(nm+1)m=n+2

(IIT JEE 2000, 6M)

Show Answer

Solution:

  1. Let S=mn+mn1+mn2++mm=n+1 m+1

It is obvious that, nm.

[given]

NOTE This question is based upon additive loop.

Now, S=mm+mm+1+mm+2++mn

=m+1m+1+m+1m+m+2m+nmmm=1=m+1m+1=m+2m+1+m+2m++nm=m+1m+3++nm=................=m+1n+mn=n+1m+1, which is true. 

Again, we have to prove that

nm+2n1m+3n2m++(nm+1)mm=n+2m+2 Let S1=mn+2n1m+3n2m++(nm+1)mm=nm+n1m+n2m++mm+n1m+n2m++mm+n2m++mmnm+1 rows +mm

Now, sum of the first row is n+1

m+1

Sum of the second row is n m+1.

Sum of the third row is n1

m+1,

Sum of the last row is m m=m+1 m+1.

Thus, S=n+1 m+1+n m+1+n1 m+1

++m+1m+1=n+1+1m+2=n+2m+2

[from Eq. (i) replacing n by n+1 and m by m+1 ]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक