Binomial Theorem 1 Question 8

9. The total number of irrational terms in the binomial expansion of $\left(7^{1 / 5}-3^{1 / 10}\right)^{60}$ is

(2019 Main, 12 Jan II)

(a) 49

(b) 48

(c) 54

(d) 55

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. The general term in the binomial expansion of $(a+b)^{n}$ is $T _{r+1}={ }^{n} C _r a^{n-r} b^{r}$.

So, the general term in the binomial expansion of $\left(7^{1 / 5}-3^{1 / 10}\right)^{60}$ is

$$ \begin{aligned} T _{r+1} & ={ }^{60} C _r\left(7^{1 / 5}\right)^{60-r}\left(-3^{1 / 10}\right)^{r} \\ & ={ }^{60} C _r 7^{\frac{60-r}{5}}(-1)^{r} 3^{\frac{r}{10}}=(-1)^{r}{ }^{60} C _r 7^{12-\frac{r}{5}} 3^{\frac{r}{10}} \end{aligned} $$

The possible non-negative integral values of ’ $r$ ’ for which $\frac{r}{5}$ and $\frac{r}{10}$ are integer, where $r \leq 60$, are $r=0,10,20,30,40,50,60$.

$\therefore$ There are 7 rational terms in the binomial expansion and remaining $61-7=54$ terms are irrational terms.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक