Binomial Theorem 1 Question 21

23. If in the expansion of (1+x)m(1x)n, the coefficients of x and x2 are 3 and -6 respectively, then m is euqal to

(1999, 2M)

(a) 6

(b) 9

(c) 12

(d) 24

Show Answer

Solution:

  1. (1+x)m(1x)n=1+mx+m(m1)2x2+

1nx+n(n1)2x2

=1+(mn)x+m(m1)2+n(n1)2mnx2+

term containing power of x3.

Now,

mn=3

[ coefficient of x=3, given]

and 12m(m1)+12n(n1)mn=6

m(m1)+n(n1)2mn=12m2m+n2n2mn=12(mn)2(m+n)=12m+n=9+12=21

On solving Eqs. (i) and (ii), we get m=12



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक