Application of Derivatives 4 Question 8

9. The maximum value of the function

$$ f(x)=3 x^{3}-18 x^{2}+27 x-40 $$

on the set $S={x \in R: x^{2}+30 \leq 11 x }$ is (2019 Main, 11 Jan I)

(a) 122

(b) -122

(c) -222

(d) 222

Show Answer

Answer:

Correct Answer: 9. (a)

Solution:

  1. We have,

$$ \begin{aligned} f(x) & =3 x^{3}-18 x^{2}+27 x-40 \\ \Rightarrow \quad f^{\prime}(x) & =9 x^{2}-36 x+27 \\ = & 9\left(x^{2}-4 x+3\right)=9(x-1)(x-3) \end{aligned} $$

Also, we have $S={x \in R: x^{2}+30 \leq 11 x }$

Clearly, $\quad x^{2}+30 \leq 11 x$

$$ \begin{array}{llrl} \Rightarrow & & x^{2}-11 x+30 & \leq 0 \\ \Rightarrow & & (x-5)(x-6) & \leq 0 \Rightarrow x \in[5,6] \\ \text { So, } & & S & =[5,6] \end{array} $$

Note that $f(x)$ is increasing in $[5,6]$

$\left[\because f^{\prime}(x)>0\right.$ for $x \in[5,6]$

$\therefore f(6)$ is maximum, where

$$ f(6)=3(6)^{3}-18(6)^{2}+27(6)-40=122 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक