Application of Derivatives 4 Question 58

61. If $x$ and $y$ be two real variables such that $x>0$ and $x y=1$. Then, find the minimum value of $x+y$.

(1981, 2M)

Integer Answer Type Questions

Show Answer

Answer:

Correct Answer: 61. (7)

Solution:

  1. Let $f(x)=x+y$, where $x y=1$

$$ \begin{array}{ll} \Rightarrow & f(x)=x+\frac{1}{x} \\ \Rightarrow & f^{\prime}(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}} \\ \text { Also, } & f^{\prime \prime}(x)=2 / x^{3} \end{array} $$

On putting $f^{\prime}(x)=0$, we get

$$ x= \pm 1, \text { but } x>0 \text { [neglecting } x=-1] $$

$$ (x)>0 \text {, for } x=1 $$

Hence, $f(x)$ attains minimum at $x=1, y=1$

$\Rightarrow(x+y)$ has minimum value 2 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक