Application of Derivatives 4 Question 4

4. If $f(x)$ is a non-zero polynomial of degree four, having local extreme points at $x=-1,0,1$, then the set $S={x \in R: f(x)=f(0)}$ contains exactly

(a) four rational numbers

(2019 Main, 9 April I)

(b) two irrational and two rational numbers

(c) four irrational numbers

(d) two irrational and one rational number

Show Answer

Answer:

Correct Answer: 4. (d)

Solution:

  1. The non-zero four degree polynomial $f(x)$ has extremum points at $x=-1,0,1$, so we can assume $f^{\prime}(x)=a(x+1)(x-0)(x-1)=a x\left(x^{2}-1\right)$

where, $a$ is non-zero constant.

$$ f^{\prime}(x)=a x^{3}-a x $$

$\Rightarrow \quad f(x)=\frac{a}{4} x^{4}-\frac{a}{2} x^{2}+C$

[integrating both sides]

where, $C$ is constant of integration.

Now, since $f(x)=f(0)$

$\Rightarrow \frac{a}{4} x^{4}-\frac{a}{2} x^{2}+C=C \Rightarrow \frac{x^{4}}{4}=\frac{x^{2}}{2}$

$$ \Rightarrow \quad x^{2}\left(x^{2}-2\right)=0 \Rightarrow x=-\sqrt{2}, 0, \sqrt{2} $$

Thus, $f(x)=f(0)$ has one rational and two irrational roots.

Key Idea

(i) Use formula of volume of cylinder, $V=\pi r^{2} h$ where, $r=$ radius and $h=$ height

(ii) For maximum or minimum, put first derivative of $V$ equal to zero

Let a sphere of radius 3 , which inscribed a right circular cylinder having radius $r$ and height is $h$, so

From the figure, $\frac{h}{2}=3 \cos \theta$

$\Rightarrow \quad h=6 \cos \theta$

and

$r=3 \sin \theta$

$\because$ Volume of cylinder $V=\pi r^{2} h$ $=\pi(3 \sin \theta)^{2}(6 \cos \theta)=54 \pi \sin ^{2} \theta \cos \theta$. For maxima or minima, $\frac{d V}{d \theta}=0$

$\Rightarrow \quad 54 \pi\left[2 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right]=0$

$\Rightarrow \quad \sin \theta\left[2 \cos ^{2} \theta-\sin ^{2} \theta\right]=0$

$\Rightarrow \quad \tan ^{2} \theta=2 \quad \because \theta \in 0, \frac{\pi}{2}$

$\Rightarrow \quad \tan \theta=\sqrt{2}$

$\Rightarrow \quad \sin \theta=\sqrt{\frac{2}{3}}$ and $\cos \theta=\frac{1}{\sqrt{3}}$

From Eqs. (i) and (ii), we get

$$ h=6 \frac{1}{\sqrt{3}}=2 \sqrt{3} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक