Application of Derivatives 4 Question 39

41. Let $g(x)=\int _0^{e^{x}} \frac{f^{\prime}(t)}{1+t^{2}} d t$. Which of the following is true?

(a) $g^{\prime}(x)$ is positive on $(-\infty, 0)$ and negative on $(0, \infty)$

(b) $g^{\prime}(x)$ is negative on $(-\infty, 0)$ and positive on $(0, \infty)$

(c) $g^{\prime}(x)$ changes sign on both $(-\infty, 0)$ and $(0, \infty)$

(d) $g^{\prime}(x)$ does not change sign $(-\infty, \infty)$

Analytical & Descriptive Questions

Show Answer

Answer:

Correct Answer: 41. $a=\frac{1}{4}, b=\frac{-5}{4} ; f(x)=\frac{1}{4} x^{2}-\frac{5}{4} x+2$

Solution:

  1. $\quad g^{\prime}(x)=\frac{f^{\prime}\left(e^{x}\right)}{1+\left(e^{x}\right)^{2}} \cdot e^{x}$

$$ =2 a \frac{e^{2 x}-1}{\left(e^{2 x}+a e^{x}+1\right)^{2}} \quad \frac{e^{x}}{1+e^{2 x}} $$

$$ g^{\prime}(x)=0 \text {, if } e^{2 x}-1=0 \text {, i.e. } x=0 $$

If

$$ x<0, e^{2 x}<1 \Rightarrow g^{\prime}(x)<0 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक