Application of Derivatives 4 Question 38

40. Which of the following is true?

(a) $f(x)$ is decreasing on $(-1,1)$ and has a local minimum at $x=1$

(b) $f(x)$ is increasing on $(-1,1)$ and has a local maximum at $x=1$

(c) $f(x)$ is increasing on $(-1,1)$ but has neither a local maximum nor a local minimum at $x=1$

(d) $f(x)$ is decreasing on $(-1,1)$ but has neither a local maximum nor a local minimum at $x=1$

Show Answer

Answer:

Correct Answer: 40. $(2,1)$

Solution:

  1. When $x \in(-1,1)$,

$$ x^{2}<1 \Rightarrow x^{2}-1<0 $$

$\therefore f^{\prime}(x)<0, f(x)$ is decreasing.

Also, at $\quad x=1, f^{\prime \prime}(1)=\frac{4 a}{(a+2)^{2}}>0 \quad[\because 0<a<2]$

So, $f(x)$ has local minimum at $x=1$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक