Application of Derivatives 4 Question 29

31. Let $f: R \rightarrow(0, \infty)$ and $g: R \rightarrow R$ be twice differentiable functions such that $f^{\prime \prime}$ and $g^{\prime \prime}$ are continuous functions on $R$. Suppose $f^{\prime}(2)=g(2)=0, f^{\prime \prime}(2) \neq 0$ and $g^{\prime}(2) \neq 0$.

If $\lim _{x \rightarrow 2} \frac{f(x) g(x)}{f^{\prime}(x) g^{\prime}(x)}=1$, then

(2016 Adv.)

(a) $f$ has a local minimum at $x=2$

(b) $f$ has a local maximum at $x=2$

(c) $f^{\prime \prime}(2)>f(2)$

(d) $f(x)-f^{\prime \prime}(x)=0$, for atleast one $x \in R$

Show Answer

Answer:

Correct Answer: 31. (b)

Solution:

  1. Here,

$$ \lim _{x \rightarrow 2} \frac{f(x) \cdot g(x)}{f^{\prime}(x) \cdot g^{\prime}(x)}=1 $$

$\Rightarrow \lim _{x \rightarrow 2} \frac{f(x) g^{\prime}(x)+f^{\prime}(x) g(x)}{f^{\prime \prime}(x) g^{\prime}(x)+f^{\prime}(x) g^{\prime \prime}(x)}=1$

$$ \Rightarrow \quad \frac{f(2) g^{\prime}(2)+f^{\prime}(2) g(2)}{f^{\prime \prime}(2) g^{\prime}(2)+f^{\prime}(2) g^{\prime \prime}(2)}=1 $$

[using L’ Hospital’s rule]

$$ \Rightarrow \quad \frac{f(2) g^{\prime}(2)}{f^{\prime \prime}(2) g^{\prime}(2)}=1 \quad\left[\because f^{\prime}(2)=g(2)=0\right] $$

$\Rightarrow \quad f(2)=f^{\prime \prime}(2)$

$\therefore f(x)-f^{\prime \prime}(x)=0$, for atleast one $x \in R$.

$\Rightarrow$ Option (d) is correct.

Also, $f: R \rightarrow(0, \infty)$

$$ \begin{array}{lrl} \Rightarrow & f(2)>0 \\ \therefore & f^{\prime \prime}(2)=f(2)>0 \end{array} $$

[from Eq. (i)]

Since, $f^{\prime}(2)=0$ and $f^{\prime \prime}(2)>0$

$\therefore f(x)$ attains local minimum at $x=2$.

$\Rightarrow$ Option (a) is correct.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक