Application of Derivatives 4 Question 21

22. If $f(x)=\begin{aligned} & |x| \text {, for } 0<|x| \leq 2 \ & 1\end{aligned}$, for $\quad x=0$. Then, at $x=0, f$ has

(a) a local maximum

(b) no local maximum

(c) a local minimum

(d) no extremum

$(2000,1 M)$

Show Answer

Answer:

Correct Answer: 22. (b)

Solution:

  1. It is clear from figure that at $x=0, f(x)$ is not continuous.

Here, $f(0)>$ RHL at $x=0$ and $f(0)>$ LHL at $x=0$

So, local maximum at $x=0$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक