Application of Derivatives 4 Question 20

21. If f(x)=x2+2bx+2c2 and g(x)=x22cx+b2, such that minf(x)>maxg(x), then the relation between b and c, is

(2003,2M)

(a) No real value of b and c

(b) 0<c<b2

(c) |c|<|b|2

(d) |c|>|b|2

Show Answer

Answer:

Correct Answer: 21. (c)

Solution:

  1. Given f(x)=x2+2bx+2c2 and g(x)=x22cx+b2

Then, f(x) is minimum and g(x) is maximum at x=b4a and f(x)=D4a, respectively.

minf(x)=(4b28c2)4=(2c2b2)

and maxg(x)=(4c2+4b2)4(1)=(b2+c2)

Now, minf(x)>maxg(x)

2c2b2>b2+c2c2>2b2|c|>2|b|



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक