Application of Derivatives 4 Question 18

19. Let $f, g$ and $h$ be real-valued functions defined on the interval $[0,1]$ by $f(x)=e^{x^{2}}+e^{-x^{2}}, g(x)=x e^{x^{2}}+e^{-x^{2}}$ and $h(x)=x^{2} e^{x^{2}}+e^{-x^{2}}$. If $a, b$ and $c$ denote respectively, the absolute maximum of $f, g$ and $h$ on $[0,1]$, then

(2010)

(a) $a=b$ and $c \neq b$

(b) $a=c$ and $a \neq b$

(c) $a \neq b$ and $c \neq b$

(d) $a=b=c$

Show Answer

Answer:

Correct Answer: 19. (a)

Solution:

  1. Given function, $f(x)=e^{x^{2}}+e^{-x^{2}}, g(x)=x e^{x^{2}}+e^{-x^{2}}$ and $h(x)=x^{2} e^{x^{2}}+e^{-x^{2}}$ are strictly increasing on $[0,1]$.

Hence, at $x=1$, the given function attains absolute maximum all equal to $e+1 / e$.

$$ \Rightarrow \quad a=b=c $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक