Application of Derivatives 4 Question 17

18. The number of points in $(-\infty, \infty)$ for which

$x^{2}-x \sin x-\cos x=0$, is

(2013 Adv.)

(a) 6

(b) 4

(c) 2

(d) 0

Show Answer

Answer:

Correct Answer: 18. (c)

Solution:

  1. PLAN The given equation contains algebraic and trigonometric functions called transcendental equation. To solve transcendental equations we should always plot the graph for LHS and RHS.

Here, $x^{2}=x \sin x+\cos x$

Let $f(x)=x^{2}$ and $g(x)=x \sin x+\cos x$

We know that, the graph for $f(x)=x^{2}$

To plot,

$$ \begin{aligned} g(x) & =x \sin x+\cos x \\ g^{\prime}(x) & =x \cos x+\sin x-\sin x \\ g^{\prime}(x) & =x \cos x \\ g^{\prime \prime}(x) & =-x \sin x+\cos x \end{aligned} $$

$$ \begin{array}{llrl} \text { Put } & g^{\prime}(x) & =0 \Rightarrow x \cos x=0 \\ \therefore & x & =0, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2} \end{array} $$

At $x=0, \frac{3 \pi}{2}, \frac{7 \pi}{2}, \ldots, f^{\prime \prime}(x)>0$, so minimum

At $x=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots, f^{\prime}(x)<0$, so maximum

So, graph of $f(x)$ and $g(x)$ are shown as

So, number of solutions are 2.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक