Application of Derivatives 4 Question 16

17. If $x=-1$ and $x=2$ are extreme points of $f(x)=\alpha \log |x|+\beta x^{2}+x$, then

(a) $\alpha=-6, \beta=\frac{1}{2}$

(b) $\alpha=-6, \beta=-\frac{1}{2}$

(c) $\alpha=2, \beta=-\frac{1}{2}$

(d) $\alpha=2, \beta=\frac{1}{2}$

(2014 Main)

Show Answer

Answer:

Correct Answer: 17. (c)

Solution:

  1. Here, $x=-1$ and $x=2$ are extreme points of $f(x)=\alpha \log |x|+\beta x^{2}+x$, then

$$ \begin{aligned} f^{\prime}(x) & =\frac{\alpha}{x}+2 \beta x+1 \\ f^{\prime}(-1) & =-\alpha-2 \beta+1=0 \end{aligned} $$

[at extreme point, $f^{\prime}(x)=0$ ]

$$ f^{\prime}(2)=\frac{\alpha}{2}+4 \beta+1=0 $$

On solving Eqs. (i) and (ii), we get

$$ \alpha=2, \beta=-\frac{1}{2} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक